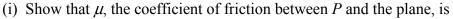

MECHANICS (C) UNIT 1TEST PAPER 5Take $g = 9.8 \text{ ms}^{-2}$ and give all answers correct to 3 significant figures where necessary.

1. A stone is projected vertically **downwards** with an initial speed of 0.6 ms^{-1} and reaches the ground after 2.9 seconds. Find the height above ground level from which it was projected. [3]

The acceleration of a particle P is (8t - 18) ms⁻², where t seconds is the time that has elapsed since 3. *P* passed through a fixed point *O* on the straight line on which it is moving. At time t = 3, P has speed 2 ms⁻¹. Find

- (i) the velocity of *P* at time *t*, [3] (ii) the values of t when P is instantaneously at rest. [3]
- A car, of mass 1800 kg, pulls a trailer of mass 350 kg along a straight horizontal road. When the 4. car is accelerating at 0.2 ms^{-2} , the resistances to the motion of the car and trailer have magnitudes 300 N and 100 N respectively. Find, at this time,
 - (i) the driving force produced by the engine of the car, [3]
 - (ii) the tension in the tow-bar between the car and the trailer. [4]
- A train starts from rest at a station S and accelerates at a constant rate for 2x seconds to a speed of 5. $5x \text{ ms}^{-1}$. It maintains this speed until 126 seconds after it left S and then decelerates at a constant rate until it comes to rest at another station T, 20x seconds after it left S.

(i) Sketch a velocity-time graph for this journey.	[4]
Given that the distance between S and T is 5.4 km,	
(ii) show that $x^2 + 7x = 120$.	[4]


(iii) Find the value of x. [3] 6. A, B and C are three small spheres of equal radius and masses 2m, m and 5m respectively.

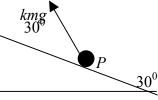
They are placed in a straight line on a smooth horizontal surface. A is projected with speed 6 ms¹ towards *B*, which is at rest. After they collide, *B* starts to move with speed 8 ms^{-1} .

(i) Find the speed of A after it collides with B.

After travelling 3 m, B hits C, which is then travelling towards B at $2 \cdot 2$ ms⁻¹. C is brought to rest by this impact.

- (ii) Show that the direction of *B*'s motion is reversed and find its new speed. [3]
- (iii) Find how far B now travels before it collides with A again.
 - [6]
- (iv) State a modelling assumption that you have made about the spheres.
- 7. A particle *P*, of mass *m*, is in contact with a rough plane inclined at 30Ý to the horizontal as shown. A light string is attached to *P* and makes an angle of 30Ý with the plane. When the tension in this string has magnitude *kmg*, *P* is just on the point of moving up the plane.

(ii) Given further that
$$k = \frac{3\sqrt{3}}{7}$$
, deduce that $\mu = \frac{\sqrt{3}}{6}$. [3]

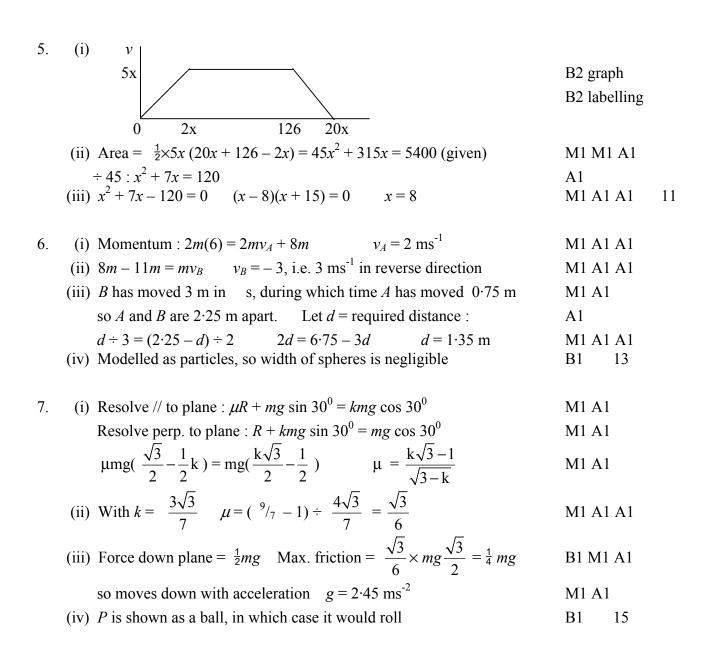

The string is now removed.

(iii) Determine whether P will move down the plane and, if it does, find its acceleration. [5]

(iv) Give a reason why the way in which P is shown in the diagram might not be consistent with the modelling assumptions that have been made. [1]

MECHANICS 1 (C) TEST PAPER 5 : ANSWERS AND MARK SCHEME

1.	$s = ut + \frac{4}{2}at^2$: $h = 0.6(2.9) + 4.9(2.9)^2 = 42.9$ m	MI AI AI	3
2.	(i) $R = 2(5 \sin 55^{\circ}) = 8.19 \text{ N}$ (ii) Bearing = $70 \div 2 = 0.035^{\circ}$	M1 A1 A1 M1 A1	5
3.	(i) $v = \int adt = 4t^2 - 18t + c$ $v(3) = 2 : c = 20$ $v = 4t^2 - 18t + 20$ (ii) $v = 0 : 2(t-2)(2t-5) = 0$ $t = 2, t = 2.5$	M1 A1 A1 M1 A1 A1	6
4.	(i) $F - 400 = 2150 \times 0.2$ $F = 400 + 430 = 830$ N (ii) $F - 300 - T = 1800 \times 0.2$ $T = 530 - 360 = 170$ N	M1 A1 A1 M1 A1 M1 A	A17



$$\frac{p}{30^{0}}$$

$$\frac{k\sqrt{3}-1}{\sqrt{3-k}} .$$
 [6]

[3]

[1]

PMT